


# **DLI-CVD** of Lithium Niobate

## Turn-key equipment and process solutions

### **Chemicals and Handling**

- □ Tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato) Niobium(IV): Nb[TMHD]<sub>4</sub>
- **2,2,6,6-Tetramethyl-3,5-heptanedionato Litihum:** Li[TMHD]
- □ **Solution:** 0.01M in Mesitylene solvent
- □ Oxidizing agent: O<sub>2</sub>
- Precursor tank: Full rinsing capability, Solution kept at RT
- □ **Liquid delivery panel:** PLC control with Ethernet interface







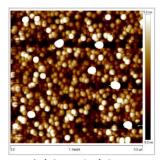


#### □ Direct Liquid Injection technology:

- Wide range of organometallic precursors available
- Highest vaporization efficiency for CVD/ALD
- □ **Precursor injection:** Close loop pulsed gas flow injection
  - Precise and reproducible precursor flow control
  - Fine control of the material stoichiometry
- □ Resistive rotating substrate holder:
  - Precise control of the temperature from RT to 850 °C
  - Position adjustment in the reactor chamber: 100 mm motion.
- □ **Automatic process control:** Real time display/data collection
- □ Remote operation: Industrial PLC and TCP/IP com

#### Thermal CVD LiNbO<sub>3</sub> film:

Pure single LiNbO<sub>3</sub> phase Controlled Li nonstoichiometry Epitaxial growth

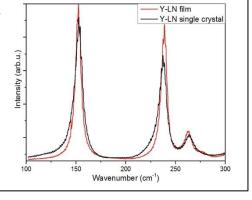

Growth rate: 0.3 to 0.6 nm/min

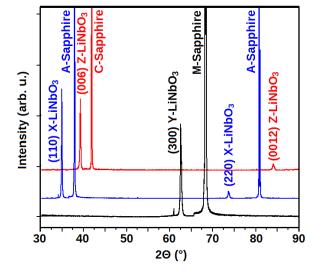
Thickness < 300 nm

**Roughness: < 5% thickness** 

Thickness homogeneity:

10% on 4" wafer





 $Z-LiNbO_3$  on  $C-Al_2O_3$ RMS = 4.02 nm

Raman spectroscopy of Y-LiNbO<sub>3</sub> on M-Al<sub>2</sub>O<sub>3</sub>

Congruent crystal: Li<sub>2</sub>O - 48.34 mol%

 $LiNbO_3$  thin film:  $Li_2O - 49.4$  mol%





**XRD:** Epitaxial growth X-, Y- and Z- oriented films on sapphire substrates

#### **FWHM of rocking curve:**

0.29° (Z-LiNbO<sub>3</sub> film)

0.23° (C-sapphire)